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A B S T R A C T   

Purpose: Recently, brain connectivity networks have been used for the classification of neurological disorder, 
such as Autism Spectrum Disorders (ASD) or Alzheimer’s disease (AD). Network analysis provides a new way for 
exploring the association between brain functional deficits and the underlying structural disruption related to 
brain disorders. Network embedding learning that aims to automatically learn low-dimensional representations 
for brain networks has drawn increasing attention in recent years. 
Method: In this work we build upon graph neural network in order to learn useful representations for graph 
classification in an end-to-end fashion. Specifically, we propose a hierarchical GCN framework (called hi-GCN) to 
learn the graph feature embedding while considering the network topology information and subject’s association 
at the same time. 
Results: To demonstrate the effectiveness of our approach, we evaluate the performance of the proposed method 
on the Alzheimer’s Disease Neuroimaging Initiative (ADNI) dataset and Autism Brain Imaging Data Exchange 
(ABIDE) dataset. Extensive experiments on ABIDE and ADNI datasets have demonstrated competitive perfor
mance of the hi-GCN model. Specifically, we obtain an average accuracy of 73.1%/78.5% as well as AUC of 
82.3%/86.5% on ABIDE/ADNI. The comprehensive experiments demonstrate that our hi-GCN is effective for 
graph classification with brain disorders diagnosis. 
Conclusion: The proposed hi-GCN method performs the graph embedding learning from a hierarchical perspective 
while considering the structure in individual brain network and the subject’s correlation in the global population 
network, which can capture the most essential embedding features to improve the classification performance of 
disease diagnosis. Moreover, the proposed jointly optimizing strategy also achieves faster training and easier 
convergence than both the hi-GCN with pre-training and two-step supervision.   

1. Introduction 

Brain disorders such as Alzheimer’s disease (AD) [1–4] and Autism 
spectrum disorder (ASD) [5,6] are considered in terms of disruptions of 
the normal-range operation of brain functions. While psychiatric dis
orders are diagnosed based on symptom scores from clinical interview, 
there are no existing gold standards that can be used for definitive 
validation. Resting state functional MRI (rs-fMRI) provides us with in
formation about the default state of the brain, and allows us to evaluate 
functional connectivity and its alterations in brain disorders. It is a 
method used to evaluate regional interactions that occur in a resting 
state when an explicit task is not being performed. The patients with 

ASD or AD dementia exhibit alterations of functional cortical connec
tivity in rs-fMRI analyses. Brain functional connectivity (FC) derived 
from rs-fMRI data has become a powerful approach to measure and map 
brain activity. Recent studies have shown that rs-fMRI based analysis of 
brain connectivity is effective in helping understand the pathology of 
brain diseases, such as autism spectrum disorder (ASD) and Alzheimer’s 
disease (AD) [1]. 

The rs-fMRI data has complex structure, which are inherently rep
resented as a network with a set of nodes and edges [7]. Many works 
focus on modeling the whole brain rs-fMRI as a network [8–10] and 
extracting representation from network [11–13]. Recently, functional 
connectivity networks constructed from rs-fMRI hold great promise for 
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distinguishing brain disorder patients from NC(Normal control) [14,15]. 
It can be regarded as a graph classification problem. It is important to 
extract a useful network representation from the brain network to 
facilitate a range of learning tasks, such as brain network classification 
and network visualization [16,17]. The commonly used features are 
calculated based on graph-theoretic analysis, such as clustering co
efficients and local clustering coefficients [14], which are calculated 
based on each ROI’s local connectivity pattern. However, hand-crafted 
graph features may not be precise enough to represent or characterize 
the network [18,19]. In recent years, the high-level feature represen
tation of deep convolutional neural networks has proven to be superior 
to hand-crafted low-level and mid-level features [20–22]. However, 
convolutional neural networks and recurrent neural networks, have 
mainly focused on the grid-structured inputs rather than network 
structure data. 

Network embedding [23–25] is an approach that is used to transform 
nodes in the network into a lower dimensional representation whilst 
maximally preserving the network structure. Embedding a brain 
network into a meaningful low-dimensional representation can improve 
the classification performance of disease diagnosis. Kipf & Welling [26] 
proposed graph convolutional networks (GCN) as an effective graph 
embedding model that naturally combines structure information and 
node features in the learning process. Recent works have applied GCN 
on the functional network derived from rs-fMRI data to extract latent 
features from graph [27–30]. However, the previous works on network 
embedding learning of brain functional network consider each instance 
(subject) independently in the learning process, ignoring the association 
among instances (subjects). The association among the instances (sub
jects) is critical and the neighborhood information should be considered 
during the embedding learning. Incorporating and preserving the 
intrinsic association can promote to learn a better embedding of the 
brain functional network. The classification methods with modeling the 
correlation among instances provide a natural framework to analyze the 
relationships among the instances in the data set. In this framework, 
nodes can represent individuals (patients or healthy controls) accom
panied by a set of features, while the graph edges incorporate associa
tions between subjects. The edge between individuals is implicitly 
obtained by calculating pairwise similarities. Although no explicit as
sociation between nodes exists, the correlation between nodes can be 
implicitly obtained by calculating pairwise similarities to improve the 
classification performance. 

In our work, we formulate disease diagnosis as a graph classification 
problem and attempt to advance deep learning for graph-structured data 
with GCN. To consider the correlation among the samples in population, 
the population is treated as a network and the aim is to learn network 
embedding for subjects based on the graph structure. Accurate learning 
of the network embedding with correlation and estimation of the sub
ject’s correlation play critical roles of population network analysis in 
improving the performance of graph data classification. We propose an 
end-to-end network embedding learning network for brain functional 
connectivity networks from both perspective of network level and 
population level. The framework can analyze and classify the functional 
connectivity in fMRI data directly in an end-to-end trainable fashion. In 
the present work, the aim is to achieve a mapping function from a brain 
network to a low-dimensional vector representation by preserving both 
topology structure within population network and the structure within 
individual brain functional network. 

To learn the network feature embedding considering the network 
topology information and subject’s association at the same time, two 
major challenges in building up such a joint graph analysis framework 
are: how to build an unified framework for network embedding learning 
and how to optimize the end-to-end network embedding framework? To 
solve the two challenges, we proposed an effective learning strategy for 
modeling the brain connectivity network and population network 
simultaneously in a hierarchical GCN framework (called hi-GCN). The 
framework involves two individual GCNs for modeling the graph of 

individual brain functional network and the whole population network, 
respectively. A compact representation of brain functional network can 
be learned automatically by a graph-level embedding learning GCN, we 
called it f-GCN. Then, another GCN, called p-GCN, further updates each 
node’s embedding of the graph data, via aggregating the representations 
of its neighbors and itself. During the training of p-GCN on the popu
lation network, a graph kernel is used directly to measure the similarity 
between pairs of brain networks. It can capture local properties 
considering the graph structure when calculating the similarity of nodes 
with network structure. Through the joint learning of hi-GCN, a high- 
level embedding of brain network representation can be effectively 
learned by deriving the structure of brain regions and aggregating 
embedding of its neighboring subjects in an end-to-end fashion with a 
global supervision such that the embedding learned is useful for 
classification. 

The main contributions of this paper can be summarized as follows:  

1. In this paper, we focus on learning deep representations from fMRI 
brain connectivity networks, where each brain network represents 
the brain activity patterns of a particular subject. We propose a Hi
erarchical GCN (hi-GCN) model which is capable of jointly learning 
the graph embedding from both the aspects of the brain functional 
network and the population network at the same time, which can 
extract the most useful spatial features and capture the most essential 
embedding features coherently. We assume that the brain network 
exhibit s network structures at two levels: 1) the region-to-region 
brain activity correlations in the brain network, and 2) the subject- 
to-subject relationship in the population network. The hierarchical 
structural patterns is crucial for learning more accurate representa
tions of the brain network. Specifically, our hi-GCN model has a hi
erarchical architecture with a two-level GCN. Its first level is to learn 
a network embedding from the topological structure of the original 
connectivity network. Its second level, on the other hand, is to 
incorporate contextual correlation among the subjects to enhance 
the semantic information. Through the joint learning of hi-GCN, a 
high-level embedding of brain network representation can be effec
tively learned by deriving the structure of brain regions and aggre
gating embedding of its neighboring subjects in an end-to-end 
fashion with a global supervision such that the embedding learned is 
useful for classification. With the two-level GCN architecture, each 
brain network is mapped into an embedding. 

2. We develop an optimization strategy for jointly learning the pro
posed hierarchical GCN model to handle network data with more 
efficiency. The source code for the proposed architecture is publicly 
available at: https://github.com/hao jiang1/hi-GCN.  

3. Extensive experiments on two real medical clinical applications: 
diagnosis of ASD and diagnosis of Alzheimer’s disease, showing the 
effectiveness of the proposed framework. The experimental results 
demonstrate that network embedding learning from both correla
tions within individual brain network and global population network 
can improve prediction performance. 

The rest of the paper is organized as follows. In Section 2, we provide 
a introduction of fMRI network and GCN. A detailed mathematical 
formulation of Hierarchical GCN is provided in Section 3. In Section 4, 
we conducted extensive experiments to verify the advantage of our 
method for diagnosis of ASD and diagnosis of Alzheimer’s disease. The 
conclusion is drawn in Section 5. 

2. Preliminaries 

2.1. Problem setup 

We define an undirected graph for each subject, Ni = {R i, 𝒜i}, 
where R i = {r1

i ,…, rM
i } is the set of M nodes, and A i ∈ RM×M is the 
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adjacency matrix describing the network’s connectivity in the i-th sub
ject, where M is the number of ROI. Here M = 116. The embedding of 
each vertex in R is learned during the GCN training, therefore the initial 
value of R i is set to be one. In the graph classification setting, we have a 
set of graphs {N1,…,ND}, where D is the size of dataset. Each graph Ni is 
associated with a label yi. 

In such setting of the population analysis, each subject acquisition is 
represented by a node and the pairwise similarities are modeled via 
edges connecting the nodes. Given a collection of images modeled as 
graphs Ni and the associated label yi, we construct a global population 
network N̂ = {R̂ , 𝒜̂}, where 𝒜̂ is the adjacency matrix describing the 
pairwise similarities between each pair of subjects with brain networks. 
Each subject is represented by a vertex r̂ and is associated with a 
network data. The definition of the graph’s edges is critical in order to 
capture the underlying structure of the data and explain the similarities 
between each pair of the N. We employ a graph kernel to estimate the 
S(Ni,Nj) between two network input of subjects. We will introduce it in 
Section 3.4. The diagnosis with brain functional network is a typical 
graph classification problem. The task of the graph classification is to 
take the brain network as input and predict its corresponding label 
(clinical status), i.e. patient with disorder or normal control. The aim is 
to learn the most essential embedding by taking full advantage of the 
correlation and structure within the graph and accurately predict the 
label of a given network. 

2.2. Functional connectivity network 

Recent advances in neuroimaging have led to significant improve
ments in the spatial resolution of fMRI. As a result, fMRI is currently a 
widely-used tool that measures brain activity by detecting changes 
associated with blood flow. The network of the brain can be modeled as 
a graph consisting of brain regions as the nodes and their functional 
connectivity as the edges. Brain connectivity networks are widely-used 
to model inter-regional functional connections, and are typically infer
red from the input fMRI data of each subject. 

The construction of brain network from fMRI involves two steps, 
which is shown in Fig. 1. At first, the mean time series for a set of regions 
extracted from the automated anatomical labeling (AAL) atlas [31] are 
computed and normalised to zero mean and unit variance. Then, we 
compute the region-to-region brain correlations by choosing a metric for 
measuring similarity. Pearson’s correlation (PC) analysis between BOLD 
fMRI signals of any pair of ROIs is the most popular network construc
tion method. Each vertex ri represents a brain region, and the corre
sponding time series is indicated as vi. Pearson correlation coefficient 
between the fMRI time series vi at the vertex i and the fMRI time series vj 

at the vertex j is given by 

Q
(
ri, rj

)
=

Cov
(
vi, vj

)

σvi σvj

(1)  

where Cov(vi, vj) is the cross covariance between vi and vj, and σv denotes 
the standard deviation of v. 

The final constructed network is a graph where the nodes/vertices 
represent brain regions and the edges are the region-to-region 
correlations. 

2.3. Graph convolutional networks 

The power of deep learning models lies in enabling automatic dis
covery of latent or abstract higher-level information from high dimen
sional neuroimaging data, which can be an important step to understand 
complex mental disorders. However, Convolutional Neural Networks 
(CNNs) do not generalize to irregular graphs since discretized convo
lutions are only defined for regular domains. Therefore, we use the 
spectral approach which provides a well-defined localization operator 
on graphs to define graph convolutions. 

Graph Convolutional Networks (GCN) aim to extend the data rep
resentation and classification capabilities of convolutional neural net
works, which are highly effective for signals defined on regular 
Euclidean domains, e.g. image and audio signals, to irregular, graph- 
structured data defined on non-Euclidean domains. The graph convo
lution is employed directly on graph structured data to extract highly 
meaningful patterns and features in the space domain. Formally, we are 
given the adjacency matrix 𝒜 ∈ Rn×n. GCN is stacked by several con
volutional layers and a single convolutional layer can be written as: 

E(l+1) =ReLu
(

D̃− 1/2
𝒜̂D̃− 1/2E(l)W(l)

)
, (2)  

where 𝒜̂ = 𝒜 + In , D̃ii =
∑

j
𝒜̂ij, W is a trainable weight matrix, E(l+1)

are the node embeddings (i.e., “messages” omputed after l steps of the 
GCN, and the node embeddings E(l) generated from the previous 
message-passing step. 

GCN can be considered as a Laplacian smoothing operator for node 
features over graph structures. The architecture of GCN consists of a 
series of convolutional layers, each followed by Rectified Linear Unit 
(ReLU) activation functions to increase non-linearity. The first hidden 
layer E(0) is set to the input original node features. All layers share the 
same adjacency matrix. A full GCN run L iterations of Equation (2) to 
generate the final output node embeddings, E(L). 

To localize the filter and reduce the number of parameters, we 
employ the Chebyshev Polynomials to approximate the convoluational 
kernels. The computational complexity can be reduced with K-localized 
convolutions through the polynomial approximation [32]. By recur
sively applying a stack of graph convolutions with the 1st-order 
approximation, K-localized convolutions are computed to exploit the 
information from the K-order neighborhood of central nodes. 

Fig. 1. The procedure of brain FC network construction.  
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Fig. 2. The architecture of the proposed hi-GCN model for brain network classification.  

Fig. 3. An illustration of the procedure of network embedding learning in hi-GCN.  
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3. Hierarchical GCN 

3.1. The network architecture of hierarchical GCN 

An illustration of the proposed hierarchical graph convolutional 
networks (hi-GCN) is shown in Fig. 2 for graph representation learning. 
It consists of the following:  

1) f-GCN: learning the latent embedding representation of graph 
instance based on each ROI’s connectivity into a meaningful low- 
dimensional representation for each brain network instance;  

2) Network similarity estimation in the N̂: calculating the network 
similarity for each pair of network instances with graph kernel;  

3) p-GCN: based on the embedding representation learned by f-GCN 
and the graph pairwise similarity, a new representation of a node is 
further learned by aggregating the embedding of all neighbors in the 
population network;  

4) Both f-GCN and p-GCN are jointly updated via backpropagation. 

The procedure of the embedding learning of the brain functional 
network is shown in Fig. 3. It includes two phases: network embedding 
learning within each brain network and embedding learning within the 
population network. F-GCN produces an embedding E for all network 
instances, then the learned embedding is fed to the second model (p- 

GCN) to generate a refined embedding Ê ∈ RD×P̂ where the d-th row 
describes a latent representation of the brain network from the d-th 
subject and P̂ is the dimensionality of the final network embedding. 
Intuitively, Ê with leveraging the neighborhood data can be used as 
features for the tasks of brain disorder disease diagnosis. It is important 
to learn graph representations that can capture rich information from 
both the fMRI network and the population network. The goal of hi-GCN 
for the graph classification task is to learn a nonlinear mapping from a 
brain network to an embedding vector. The procedure is defined as: 

hi − GCN : N→ê, (3)  

which involves two functions: 

f − GCN(N)= e; p − GCN
(

e, Â

)
= [ê, ŷ] (4) 

By training the entire network end-to-end, the hi-GCN deduces an 
optimal network embedding for each brain network. 

In the next subsection, we introduce details about the two parts of hi- 
GCN respectively. 

3.2. F-GCN 

In the f-GCN, multiple GCN layers are stacked. Following the con
volutional layers, a global average pooling operator produces coarsened 
graphs, which can naturally summarize the subgraph information while 
utilizing the subgraph structure. Moreover, the pooling layers enable 
GCN to reduce the number of parameters by scaling down the size of the 
representations, and thus avoid overfitting. A readout layer collapses the 
node representations of each graph into a graph representation. 

When multiple GCN layers are stacked, information about larger 
neighborhoods are integrated. However, it cannot summarize the node 
information into the higher level graph representation. To address this 
challenge, we use [33] to propose eigenvector-based pooling layers 
EigenPooling to hierarchically summarize node information and 
generate a graph representation. The pooling layers consist of two 
components: graph coarsening and generating a coarsened graph by 
treating subgraphs as supernodes. At first, we adopt spectral clustering 
to group nodes into subnetworks. The number of clusters is indicated by 
H, which is further empirically investigated. 

Let Ncoar denote the coarsened graph, which consists of the sub
networks and their connections, C ∈ RM×H (M indicates the number of 

brain regions) denotes the assignment matrix, which indicates whether a 
node belongs to a specific subnetwork, and 𝒜coar denote the adjacency 
matrix of the coarsened subnetworks. 

𝒜coar =
∑H

h=1
C(h)𝒜ext

(
C(h))T

, (5)  

where 𝒜ext is an adjacency matrix only consisting of the edges between 
subnetworks. 

For the subnetworks, the pooling operator tries to summarize the 
nodes’ features and obtain a representation for the corresponding 
supernode of the subnetworks. With the structure of the subnetworks, 
we employ a pooling operator based on the graph spectral theory by 
facilitating the eigenvectors of the Laplacian matrix of the subnetworks. 
Let Θc denote the pooling operator consisting of all the c-th up-sampled 
eigenvectors from all the subnetworks. 

Ec =ΘT
c E (6)  

where Ec ∈ RH×Pl (Pl indicates the l-th embedding dimensionality) is the 
pooled result using the c-th pooling operator. 

Finally, we obtain the node features Ecoar of Ncoar. Instead of using 
the results pooled by all the pooling operators, we choose to use the first 
Z of them as Ecoar = [E0,…,EZ] is the final pooled results. With 𝒜coar and 
Ecoar, we can learn higher level representations of the coarsened graph 
that exploits the subgraph structure as well as the node features of the 
input graph. 

3.3. p-GCN 

p-GCN module further learns the graph embedding by message 
passing according to 1) the network embedding E describing each sub
ject, and 2) the adjacent matrix between samples 𝒜̂. As shown in Fig. 3, 

the node features map of the input layer of p-GCN is defined as: Ê
0
= EL, 

where EL is the set of node embedding features learned by f-GCN. The 
main idea is to generate a node N‘s representation by aggregating its 
own features ̂ei and neighbors’ features ̂ej, where j ∈ Neighbor(i). p-GCN 
also stack multiple graph convolutional layers to extract high-level node 
representations. The model inductively learns a node representation by 
recursively aggregating and transforming feature vectors of its neigh
boring subjects. 

The definition of the graph’s edges is critical in order to capture the 
underlying structure of the data and explain the similarities between the 
feature vectors. We employ a graph kernel to directly measure the to
pological similarity between functional connectivity networks. The 
graph kernel is one kind of kernel constructed on graphs that measures 
the topological similarity between graphs. More formally, given a pair of 
networks Ni and Nj, a graph kernel can be defined as S(Ni,Nj) = 〈φ(Ni),

φ(Nj)〉, which takes into account the topology of networks Ni and Nj. 
Assume we have a function SI for computing the similarity between 

the structure of two brain networks rather than the embeddings, and the 
similarity score between a pair of brain networks Ni and Nj is denoted by 
SI(Ni,Nj). Our hi-GCN method employs a graph kernel to estimate the 
correlation between networks. Kernel methods have the desirable 
property that they do not rely on explicitly characterizing the vector 
representation φ(x) of data points in the feature space induced by a 
kernel function, but access data only via the Gram matrix K . In this 
setting, a kernel k : G × G→R is called a graph kernel, which can cap
ture the inherent similarity in the graph structure and is reasonably 
efficient to evaluate. Distances between instances with the q-th kernel 
function are calculated and are defined as K q(ri

a, ri
b), where ri

a =
∑M

u A i(a, u), indicating the local topology of nodes. We consider each 
subject as an undirected graph and employ a graph kernel to measure 
the similarity. We assume that the relation structures of brain network s 
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belonging to the same class are relatively more similar, while those 
belonging to different classes are relatively more dissimilar. Like kernels 
on vector spaces, graph kernels can be calculated implicitly by 
computing K . If the RBF kernel function is chosen, then the distance 

between instances is calculated as: K (ri
a,ri

b) = exp
(

−
‖ri

a − ri
b‖

2σ

)

, where σ 

is a kernel parameter. To only consider the strong similarity, if the dis
tance between the instances ra and rb is smaller than T (hyper
parameter), K (ri

a, ri
b) is set to 1, and 0 otherwise. 

To capture the similarity among networks, the similarity between 
networks Ni and Nj is calculated as: 

SI
(
Ni,Nj

)
=

∑M
a=1

∑M
b=1wi

awj
bK

(
xi

a, x
j
b

)

∑ni
Mwi

a
∑M

b=1wj
b

(7)  

where wi
a = 1∑M

u=1
K (xi

a ,xi
u)

is associated with each brain region ri
a in Ni with 

the q-th kernel function. 

3.4. Training scheme 

For overcoming these issues of optimization, we introduce three 

strategies to optimize the models of hi-GCN.  

1. Two-step training. Both f-GCN and p-GCN are supervised with their 
own loss function independently. The optimization procedure is 
shown in Fig. 4(a).  

2. Jointly training. We optimize f-GCN and p-GCN together with a 
single loss in hi-GCN as shown in Fig. 4(b).  

3. Pre-training. We first optimize the node embedding features with the 
loss function in f-GCN, then the overall hi-GCN is further trained on 
the same data under the supervision with the loss in hi-GCN, which is 
based on the f-GCN with trained weights as shown in Fig. 4(c). 

4. Experiment 

In this section, we present several sets of comparative experiments 
both on ABIDE and ADNI data sets. Next, we briefly introduce these 
comparative experiments. The experimental settings and results are 
described in detail in the next subsections. 

4.1. Databases and preprocessing 

We apply our model on two large and challenging databases for 

Fig. 4. The different training scheme.  
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binary classification tasks. The ABIDE database (Autism Brain Imaging 
Data Exchange Database) investigates the neural basis of autism [34]. It 
aggregates data from different 17 acquisition sites and openly shares 
rs-fMRI and phenotypic data of 1112 subjects. We select the same set of 
866 subjects used in Ref. [35], comprising 402 individuals with ASD and 
464 healthy controls acquired at 20 different sites. We use the data from 
the Preprocessed Connectome Project [36] to discriminate individuals 
with Autism Spectrum Disorder from normal controls. The ADNI was 
launched in 2003 by the National Institute on Aging (NIA), the National 
Institute of Biomedical Imaging and Bioengineering (NIBIB), the Food 
and Drug Administration (FDA), private pharmaceutical companies and 
non-profit organizations, as a $60 million, 5-year public-private part
nership. We focus on using rs-fMRI to discriminate individuals with Mild 
Cognitive Impairment (MCI) from individuals diagnosed with Alz
heimer’s Disease (AD). We select the same set of 133 subjects used in 
Ref. [35], comprising 99 individuals with MCI and 34 diagnosed with 
Alzheimer’s Disease (AD). 

4.2. Performance on hierarchical GCN 

In this experiment we evaluated the effectiveness of hi-GCN on both 
the ADNI and ABIDE databases using a 10-fold stratified cross validation 
strategy. The parameter setting of our model is shown in Table 1. Using 
the above setting, we carried out comprehensive experiments to 
demonstrate the performance of the hi-GCN model for graph classifi
cation. The important hyperparameters in our proposed model are T ∈

{0.3,0.45,0.6,0.47,0.9}, γ ∈ {1,2, 3,4, 5} and H (varying from 0 to 1). 
To select optimal parameters of our approach and all competing 
methods, we further perform a 10-fold nested cross validation proced
ure. In each trial, a nested 5-fold CV is conducted to tune the hyper
parameters in the training data. To test whether the results of our 
method and those of each competing methodThe parameter settings of 
networks are statistically different, we perform the Student’s t-test (with 
the significance level at 0.05) on the metric values achieved by our 
method and each competing method. 

We evaluate our hi-GCN on the task of graph classification to answer 
the following three questions: 

Q1: How does the jointly modeling two graphs in hi-GCN help 
improve the graph representation learning ability and the classifi
cation accuracy? 
Q2: Which learning strategy is effective on the optimization of hi- 
GCN? 
Q3: How do the important hyperparameters in hi-GCN affect the 
network performance? 

We compare our hi-GCN with the connectivity features based 
method, Eigenpooling GCN [33] and Population GCN [27]. 

Network Based Feature is a linear classification using a ridge 
classifier. In the connectivity networks, there exist a large number of low 
level features (i.e., M×(M− 1)

2 , where M is the total number of ROIs) are 
extracted from the network as network features for subsequent feature 

Table 1 
The parameter settings of network training on ABIDE and ADNI database.  

parameter name parameters 

Optimizer Adaptive optimizer (Adam) 
learning rate 0.001 
dropout rate 0.5 
batch size 900 
Training iterations 160 
l2 regularization 5.10− 4  

L (Convolutional Layers for ABIDE & ADNI) 12 & 8 
M(number of ROI) 116 
P and P̂ for ABIDE & ADNI  768 & 512 

Threshold T in graph kernel for ABIDE & ADNI 0.6 & 0.75 
Number of cluster H 7 
Kernel parameter γ 3 
Z in graph pooling 1  

Table 2 
Performance comparison of various methods. Each experiment is run 10 times and the average graph classification performance (Accuracy, AUC, Sensitivity and 
Specificity) is reported. The best results are bold. The values marked by ∗ indicate that our method achieves significantly different results compared with the competing 
methods.  

ABIDE Methods ACC AUC Specificity Sensitivity  

network based feature 0.559±0.001*  0.602±0.002*  0.578±0.001*  0.537±0.001*   
Eigenpooling GCN 0.586±0.001*  0.655±0.003*  0.596±0.001*  0.574±0.001*   
Population GCN 0.635±0.002*  0.675±0.002*  0.651±0.002*  0.617±0.002*   
BrainNetCNN 0.651±0.003*  0.728±0.002*  0.656±0.003*  0.624±0.005*   
CC 0.607±0.002*  0.624±0.003*  0.587±0.001*  0.559±0.004*   
t-BNE 0.655±0.001*  0.708±0.001*  0.621±0.002*  0.608±0.002*   
Graph Boosting 0.646±0.002*  0.725±0.003*  0.639±0.003*  0.617±0.003*   
Ordinal Pattern 0.641±0.002*  0.729±0.002*  0.628±0.001*  0.611±0.002*   
Hi-GCN(two-step) 0.665±0.002*  0.721±0.003*  0.675±0.002*  0.653±0.003*   
Hi-GCN(pre-training) 0.671±0.003  0.743±0.003  0.681±0.003  0.659±0.003   
Hi-GCN(jointly learning) 0.672±0.003  0.745±0.003  0.684±0.003  0.659±0.003   

ADNI Methods ACC AUC Specificity Sensitivity  
network based feature 0.684±0.003*  0.691±0.002*  0.743±0.003*  0.512±0.003*   
Eigenpooling GCN 0.749±0.002*  0.711±0.004*  0.779±0.002*  0.662±0.004*   
Population GCN 0.737±0.002*  0.726±0.005*  0.763±0.002*  0.661±0.003*   
BrainNetCNN 0.728±0.002*  0.738±0.003*  0.767±0.002*  0.652±0.004*   
CC 0.701±0.004*  0.715±0.004*  0.738±0.005*  0.526±0.005*   
t-BNE 0.716±0.006*  0.722±0.006*  0.755±0.003*  0.663±0.003*   
Graph Boosting 0.731±0.005  0.726±0.004*  0.766±0.004*  0.671±0.004*   
Ordinal Pattern 0.729±0.003*  0.737±0.006*  0.769±0.004*  0.675±0.004*   
hi-GCN(two-step) 0.754±0.003  0.756±0.005*  0.785±0.003  0.664±0.004*   
hi-GCN(pre-training) 0.756±0.002  0.778±0.003*  0.785±0.003  0.672±0.003*   
hi-GCN(jointly learning) 0.756±0.002  0.789±0.004  0.777±0.002  0.695±0.003   
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selection and classification. Moreover, Recursive Feature Elimination 
(RFE) is used for feature selection. For fair comparison, the amount of 
features selected is equal to the dimension of the embedding vector 
generated by f-GCN. 

Eigenpooling GCN [33] is an end-to-end trainable GCN with a 
pooling operator EigenPooling. 

Population GCN [27] is a node level GCN for brain analysis in 
populations. The significant difference from the work in Ref. [27] are: 1) 
node: the embedding features of the nodes in the population is learned 
automatically rather than extracted; 2) edge: the similarity between 
nodes is calculated considering the structure of the brain functional 
network when constructing the population network. The apparent lim
itation of such model is that they can only learn on the vectorized node, 
which cannot effectively generalize the condition that the node is a 
graph describing the functional connectivity. The graph representation 
techniques have recently shifted from hand-crafted kernel methods to 
deep learning based end-to-end methods, which achieve better perfor
mance in graph-structured learning tasks. Moreover, the featured 
extracted prior to the classification may not be appropriate for GCN 
classification due to lacking the capacity of jointly learning. 

BrainNetCNN [37]is composed of novel edge-to-edge, edge-to-node 
and node-to-graph convolutional filters that leverage the topological 
locality of structural brain networks. 

Besides, we also compare hi-GCN with four state-of-the-art methods, 
including 2 topology-based representation approaches (i.e., Clustering 
Coefficient (CC) [38] and t-BNE [39]), and 2 subgraph-based repre
sentation approaches (i.e., Graph Boosting [40], and Ordinal Pattern 
[41]). 

Clustering Coefficient (CC) [38] extracts local clustering co
efficients as features of the brain network, by measuring the degree to 
which nodes in a network tend to cluster together (a measure that 
quantifies the cliquishness of the nodes). Then, Each network is con
verted into a feature vector to train a classifier. 

Tensor-based Brain Network Embedding (t-BNE) [39] is a con
strained tensor factorization model for brain network embedding. It can 
handle partially symmetric tensors, incorporates side information 
guidance and orthogonal constraint to obtain informative and distinct 
latent factors, and the obtained vectorized features are used for 
classification. 

Graph Boosting (GB) [40] first mines subgraphs from each network 

Fig. 5. The comparative boxplots on the ABDIE dataset.  
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as features, and then learns subgraph-based decision stumps as weak 
learners. Finally, a Boosting algorithm in which subgraph-based deci
sion stumps are used as weak learners is trained. 

Ordinal Pattern (OP) [41] first mines frequent subgraphs via 
ordinal patterns that contains a sequence of weighted edges in brain 
connectivity networks of patients and normal controls. This method can 
simultaneously model both weight information (i.e., connectivity 
strength) and ordinal relationship of weighted edges in a brain con
nectivity network while relying on the subsequent classifiers. 

Note that SVM with an RBF kernel is employed as the base classifier 
for the features extracted by both CC and OP. Both the regularization 
and the kernel parameters of SVM are tuned by 10 nested cross 
validation. 

Experimental results are reported in Table 2 where the best results 
are boldfaced. Moreover, comparative boxplots across all folds between 
the comparable approaches are shown in Fig. 5 and Fig. 6 for both da
tabases. As can be seen, our proposed method consistently showed the 
best performance over the baseline methods, and achieves statistically 
significant results on most of the results. These results reveal several 
interesting points:  

1. For ABIDE, we obtain an average accuracy/AUC of 66.5%/72.1%, 
67.1%/74.3% and 67.2%/74.5% in hi-GCN with different optimi
zation scheme respectively, outperforming the other methods 
including network-based feature method(55.9%/60.2%), Eigen
pooling GCN (58.6%/65.5%) and Population GCN (63.5%/67.5%). 
Results obtained for the ADNI database also show an increase in 
performance with respect to the competing methods. It demonstrates 
that our hi-GCN is effective for graph classification with brain dis
orders diagnosis regardless of the optimization.  

2. The embedding learning methods with deep learning generally 
obtain better prediction results than the traditional extracted 
network connectivity features. Moreover, subgraph-based methods 
(i.e., GB and OP) generally obtain better performance than the 
topology-based methods, but their overall performance is not as good 
as hi-GCN’s. It implies that considering the correlation among the 
instances helps promote the learning performance.  

3. Previous studies typically utilize human-engineered features to 
represent brain connectivity networks, but these features may not be 
well coordinated with subsequent classifiers. It is worth noting that 
both topology-based and subgraph-based representation methods 

Fig. 6. The comparative boxplots on the ADNI dataset.  
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usually first extract particular network representation from brain 
connectivity networks, and then reply on pre-defined classifiers for 
brain disease diagnosis. The feature extraction and classifier training 
are treated as two separate tasks in these methods, so potential 
inconsistency between features and classifiers may degrade the final 
performance of these methods. To address this issue, in our hi-GCN, 
the representation learning and classifier training are blended into a 
unified optimization problem, and the supervision information is 
introduced to the representation learning process, so that discrimi
native representations can be obtained.  

4. Compared with Eigenpooling GCN and Population GCN, our hi-GCN 
performs the graph embedding learning from a hierarchical 
perspective considering the structure in individual brain network 
and the subject’s correlation in the global population network, which 
can capture the most essential embedding features to improve the 
classification performance of disease diagnosis. The population 
network provides a powerful means for representing complex in
teractions between subjects. The correlation among instances pro
vides rich information that can be leveraged to more 
comprehensively characterize the graph embedding. It demonstrates 

that analyzing the population graph can greatly benefit the graph 
embedding for GCN.  

5. For the optimization in hi-GCN, the scheme of jointly training is more 
effective for the graph embedding learning. This experiment further 
demonstrates that optimizing the graph embedding with considering 
both the network structure and the neighborhood in the population 
simultaneously resulted in a better solution of graph embedding and 
a better prediction performance. 

To evaluate the quality of the solution provided by our three 
different optimization algorithms, we compare them with respect to 
convergence behavior. According to Fig. 7, we can see both pre-training 
and jointly training converge faster than the two-steps. The pre-training 
method even starts convergence faster, but gets a slower convergence 
speed and almost equal accuracy compared to jointly training. 
Furthermore, it is also observed that the jointly training finally achieves 
better validation accuracy. 

Fig. 7. Convergence behavior of three optimization methods for hi-GCN on ABDIE dataset.  

Table 3 
Performance comparison of various methods based on imaging and non-imaging information. The best results are bold. The values marked by * indicate that our 
method achieves significantly different results compared with the competing methods.  

ABIDE Methods ACC AUC Specificity Sensitivity  

Population GCN 0.664±0.003*  0.723±0.004*  0.675±0.003*  0.652±0.004*   
hi-GCN(two-step) 0.719±0.002*  0.797±0.003*  0.732±0.002*  0.704±0.003*   
hi-GCN(pretraining) 0.728±0.003  0.817±0.004*  0.744±0.003  0.710±0.004*   
hi-GCN(jointly learning) 0.731±0.003  0.823±0.004  0.746±0.003  0.714±0.003   

ADNI Methods ACC AUC Specificity Sensitivity  
Population GCN 0.756±0.001*  0.813±0.002*  0.781±0.001*  0.683±0.002*   
hi-GCN(two-step) 0.779±0.002*  0.832±0.003*  0.798±0.002*  0.724±0.002*   
hi-GCN(pretraining) 0.782±0.002*  0.843±0.003*  0.803±0.002  0.720±0.003*   
hi-GCN(jointly learning) 0.785±0.002  0.865±0.004  0.805±0.002  0.726±0.003   
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4.3. Performance on different construction in population network  

1) The effect of similarity estimation scheme with auxiliary information 

Clinical and research studies commonly acquire complementary 
brain images for a more accurate and rigorous assessment of the disease 
status and likelihood of progression. To estimate the effectiveness of 
combining multi-modality, we follow the same work as in Ref. [27] by 
introducing the non-imaging complementary data (gender or acquisi
tion site) in the estimation of subject’s similarity. 

For the ABIDE population graph, we choose subject’s gender and 
acquisition site as the non-imaging modality; For the ADNI population 
graph, we choose age and gender of subjects. Let M be the non-imaging 
information of each subject. The similarity of non-imaging modality is 
calculated as: 

SNI
(
Mi,Mj

)
=

{
1 if

⃒
⃒Mi − Mj

⃒
⃒ < T

0 otherwise
, (8)  

where T is a threshold value, and T = 2 in our experiment. 
Then, we integrate both imaging and non-imaging similarity 

together to be the integrated similarity score, which can be defined as 
follows: 

S= αSI + (1 − α)SNI , (9)  

where α is a parameter to adjust the contribution of the two similarity 
scores SI and SNI towards the integrated similarity score S. In our study, 
α = 0.5. 

From the results in Table 3, it is clear that the method with auxiliary 
information outperforms the methods using one single fMRI modality. 
This validates our assumption that the complementary information 
among different modalities is helpful for constructing the population 
network. For the experiments shown in Table 3, the hi-GCN(jointly 
learning) model gave the best results, and we used this model as our 
main learning model in the following experiments.  

2) The effect of different similarity estimation scheme. 

The definition of the graph’s edges is critical in order to capture the 
underlying structure of the data and explain the similarities between the 
feature vectors. The influence of edge weight on the prediction perfor
mance was also investigated. In this section, we compare different 
similarity estimation methods of brain networks in the construction of 
the population network, involving graph kernel, metric learning and 

Pdist. All of them consider the multi-modality data during the similarity 
estimation according to Eq. (9). Metric learning is a method for learning 
a similarity metric between irregular graphs. In our work, we follow the 
work in Ref. [29] to choose siamese graph convolutional neural network 
(s-GCN) to learn a graph similarity metric in a supervised setting. Pdist 
computes the correlation distance between graph embedding vectors u 
and v learned by the f-GCN. That is 

Kpdist(u, v)=
(u − u)⋅(v − v)

‖(v − v)‖2‖(v − v)‖2
, (10)  

where u and v is the mean of the elements in vector. 
At first glance at the results in Table 4, we can see that graph kernel 

consistently outperforms all other compared methods, which demon
strates the good behavior of the graph similarity considering the struc
ture without embedding features compared with other related methods 
found in the literature. Most of the existing works focus on preserving 
network structures and properties in embedding vectors. However, some 
useful structural information may inevitably be lost. Direct similarity 
estimation with graph embedding is not appropriate. Different from 
graph kernel and Pdist, metric learning is trained to automatically pre
dict the measure of similarity between the brain networks. In the metric 
learning, the label of matching (same class) or non-matching (different 
classes) is used to supervise Siamese graph convolutional neural 
network. However, it is difficult for Siamese graph convolutional neural 
network to learn the exact similarity for complex network structure with 
insufficient training data, which demonstrates that it may not be able to 
sufficiently capture underlying patterns by learning from network in
stances. The result indicates the similarity estimation of brain network is 
critical for the population network construction. 

4.4. The influence of the hyperparameters of Hi-GCN 

In the hi-GCN model, three important parameters are the number of 
clusters in the f-GCN (H), the threshold of graph kernel in constructing 
the population network (T) and the kernel parameter in the graph kernel 
(γ). In order to evaluate the impact of these parameters on the perfor
mance of hi-GCN, we conduct two experiments with various values for 
H, T and γ. Table 5 depicts the changes of accuracy as we vary the value 
of H, we can observe that the best classification performance is achieved 
when H = 7. It demonstrates that the hi-GCN with an appropriate 
cluster number can achieve optimal classification performance. More
over, the optimal threshold T and γ of the graph kernel are unknown, 
and they play a vital role for the performance of graph similarity. We 
varied the value of the threshold T ∈ {0.3,0.45,0.6, 0.75,0.9} as well as 
γ ∈ {1,2, 3,4, 5}, and investigated the variation of performance with 
multiple values. When the threshold value T increases, the network 
becomes sparser for representing the most reliable correlation. Another 
important conclusion is that the effect of threshold T is more significant 
than γ. From Table 6 and Table 7, it can be seen that the best classifi
cation performance is achieved when T = 0.6 for ASD and T = 0.75 for 
AD. It implies that many edges are not helpful and reducing these edges 
does not influence the performance. The results further demonstrate that 
topological similarity between functional connectivity network with 
appropriate sparsity and kernel parameter is important for network 
embedding learning. 

Table 4 
Performance comparison of various network similarity estimation in the con
struction of population network. The best results are bold. The values marked by 
* indicate that our method achieves significantly different results compared with 
the competing methods.  

ABIDE Methods ACC AUC  

metric Learning 0.721±0.004*  0.819±0.002   
Pdist 0.719±0.004*  0.811±0.003*   
graph kernel 0.731±0.003  0.823±0.004  

ADNI Methods ACC AUC  
metric Learning 0.772±0.003*  0.861±0.010   
Pdist 0.768±0.004*  0.847±0.011*   
graph kernel 0.785±0.008  0.865±0.009   

Table 5 
The varying performance with the respect to cluster number H during the Eigenpooling. The best results are bold.  

H 1 2 3 4 5 6 7 8 9 10 

ABIDE database 0.602 0.658 0.699 0.722 0.730 0.729 0.731 0.731 0.708 0.711 
ADNI database 0.557 0.657 0.663 0.687 0.729 0.783 0.785 0.782 0.784 0.742  
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4.5. Comparisons with prior works 

Table 8 compares the results of our ASD vs. NC classification with 
prior works in terms of accuracy as reported in the respective references. 
In general, two types of the methods are usually developed for the 
diagnosis of the disorder diseases: (1) the traditional machine learning 
procedure (feature extraction and classification) and (2) the deep 
learning procedure (an end-to-end procedure). For the traditional ma
chine learning procedure, a straightforward solution that has been 
extensively explored is to first derive features from brain networks. Dadi 
[35] conducts a sufficient comparison (8 different ways of defining 
regions-either pre-defined or generated from the rest-fMRI data-3 
measures to build functional connectomes from the extracted time-series 
and 10 classification models to compare functional interactions across 
subjects). Through the comparison, the optimal choices in functional 
connectivity prediction pipeline is brain regions defined with regions 
using DictLearn, connectivity matrices parametrized by their 
tangent-space representation, and an l2-regularized logistic regression 
as a classier. The best accuracy is 72.5% (median) and 84.5% (the 95th 
percentile) over cross-validation folds (n = 100) on the ADNI dataset 
with the same samples. On the ABIDE dataset, the best accuracy is 71.1% 
(median) and 75.6% (the 95th percentile). Abraham also employed the 
same strategy with the best pipeline and obtained a similar performance 
(accuracy is 67%) [42]. The most important limitation of the traditional 
machine learning procedure is that feature extraction and model 
learning are treated as two separate tasks in these methods, so potential 
inconsistency between human-engineered features and classifiers may 
degrade the final performance of these methods. Moreover, relying 
solely on subject-specific imaging feature vectors fails to model the 

interaction and similarity between subjects, which can reduce perfor
mance. Compared with the traditional machine learning procedure, the 
expressive power of deep learning to extract the underlying complex 
patterns from data has been well recognized. The power of deep learning 
lies in automatically learning relevant and powerful features for any 
perdition task, which is made possible through end-to-end architectures. 
Heinsfeld et al. [5] and Eslami et al. [43] have proposed a joint learning 
procedure using an autoencoder and a single layer or multi-layer per
ceptron which results in improved quality of extracted features and 
optimized parameters for the model. From Table 9, we can observe that 
our hi-GCN usually achieves competitive performance against both deep 
learning methods proposed in Ref. [5,43]. The underlying reason could 
be that 1) the brain network has complicated structures that contain rich 
underlying information, although an autoencoder network is used to 
learn a network embedding and classification in an unified fashion, they 
are applied on the extracted connectivity feature rather than the original 

Table 6 
The varying performance with respect to T and γ during the estimation of node similarity with graph kernel. The best results are bold.  

T/γ γ = 1 γ = 2 γ = 3 γ = 4 γ = 5 

T = 0.3 0.632±0.002  0.657±0.002  0.651±0.003  0.642±0.002  0.629±0.001  
T = 0.45 0.689±0.002  0.696±0.003  0.698±0.002  0.687±0.003  0.679±0.002  
T = 0.6 0.721±0.002  0.725±0.003  0.731±0.003  0.719±0.004  0.716±0.003  
T = 0.75 0.671±0.002  0.698±0.003  0.703±0.003  0.711±0.002  0.702±0.002  
T = 0.9 0.663±0.002  0.678±0.003  0.685±0.004  0.698±0.002  0.671±0.002   

Table 7 
The varying performance with respect to T and γ during the estimation of node similarity with graph kernel on ADNI database. The best results are bold.  

T/γ γ = 1 γ = 2 γ = 3 γ = 4 γ = 5 

T = 0.3 0.632±0.004  0.621±0.004  0.602±0.005  0.594±0.004  0.572±0.003  
T = 0.45 0.691±0.004  0.709±0.006  0.693±0.006  0.668±0.006  0.652±0.005  
T = 0.6 0.749±0.006  0.762±0.007  0.763±0.008  0.754±0.006  0.752±0.006  
T = 0.75 0.743±0.006  0.756±0.007  0.785±0.008  0.781±0.007  0.759±0.006  
T = 0.9 0.719±0.004  0.743±0.005  0.752±0.006  0.763±0.006  0.726±0.004   

Table 8 
The comparison among different classifiers with previous methods for ASD vs. NC on ABIDE dataset.  

Method Feature Classifier Data CV ACC 

Sarah2018 [27] Brain connectivity 
feature 

GCN 403 ASD vs. 468 
NC 

10-CV 69.5% 

Abraham2017 
[42] 

Tangent space 
embedding 

l2-regularized classifiers (SVC-l2 and ridge 
classifier). 

403 ASD vs. 468 
NC 

10-CV 67% 

Dadi2019 [35] Network connectivity 
feature 

l2-regularized logistic regression 402 ASD vs. 464 
NC 

random 100-CV (75% for training, and 
25% for test) 

69.7% 

Eslami 2019 [43] No feature extraction ASD-DiagNet (with augmentation) 505 ASD vs. 530 
NC. 

10-CV 69.2% 
(70.1%) 

Heinsfeld 2018 
[5] 

No feature extraction Two stacked denoising autoencoders 505 ASD vs. 530 
NC 

10-CV 70% 

Our method No feature extraction hi-GCN(jointly learning) 402 ASD vs. 466 
NC 

10-CV 73.1%  

Table 9 
The comparison among different classifiers with previous methods for AD vs. 
MCI on ADNI dataset.  

Method Feature Classifier Data CV ACC 

Dadi2019 
[35] 

Network 
connectivity 
feature 

l2- 
regularized 
logistic 
regression 

40 
AD 
vs. 96 
MCI 

random 100- 
CV (75% for 
training, and 
25% for test) 

72.2% 

Our 
method 

No feature 
extraction 

hi-GCN 
(jointly 
learning) 

34 
AD 
vs. 99 
MCI 

10-CV 78.5%  
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network data; 2) they do not consider the contextual information in the 
population. Although this comparison is not done on the same propor
tion of the database, our hi-GCN exceeds previously published ABIDE 
findings. The best accuracy of previous works is 0.701, which is obtained 
by an autoencoder with data augmentation in Ref. [5]. Moreover, we 
find that the deep learning model with the end-to-end manner performs 
as well or worse than the traditional learning methods with connectivity 
feature extraction combined with ridge or SVM. Few brain network 
classification studies have explored the correlation among the brain 
regions and subjects, which are critical in neuroimaging research. To the 
best of our knowledge, the work of Parisot et al. [27] is currently rele
vant with ours for ASD diagnosis on the whole ABIDE dataset. Parisot 
et al. define a subject’s feature vector as its vectorized functional con
nectivity matrix, and employ a ridge classifier to select the most 
discriminative features from the training set. With the selected con
nectivity information as the subject’s feature, a population is repre
sented as a graph where its vertices are associated with the extracted 
image-based feature vectors and the edges encode phenotypic infor
mation. However, the GCN model is trained on the traditional network 
features rather than on the original network. Experiments demonstrate 
that the proposed hi-GCN model performs better than the GCN model 

proposed in Ref. [27], indicating simultaneously taking both the brain 
region and subject correlations into account is important. We also 
compare our method with several recent state-of the-art methods re
ported in the literature using rs-fMRI data for AD vs. MCI classification. 
Few works for discriminating AD and MCI with functional brain network 
exist in the literature. The only comparable method is proposed in 
Ref. [35]. Experimental results on the ADNI database demonstrate that 
our method substantially outperforms the existing classification method 
for AD vs. MCI. Results obtained for the ADNI database show an increase 
in performance with respect to the competing methods in Table 9. 
Overall, the results demonstrate that hi-GCN can improve upon 
state-of-the-art algorithms not just in traditional classification methods, 
but also in deep learning methods. 

4.6. Ablation study and discussion 

To our knowledge, this is the first attempt to incorporate the region- 
to-region brain activity correlations and the subject interactions among 
population into a unified model for functional connectivity network 
analysis. In our work, the population network provides a powerful 
means for representing complex interactions between subjects. The key 
to our hi-GCN model is the subject’s initial embedding and similarity 
among the subjects in the population network. In order to investigate the 
role of them in our model intuitively, we made sufficient ablation study 
by varying the threshold of the population network, exchanging the 
strategies of subjects’ initial embedding and the similarity estimation, 
fusing the network embedding with the graph properties as node fea
tures, employing the traditional classification method, and employing 
other graph neural networks for the population network.  

1) Varying the threshold of the population network 

Network similarity is a quantitative measurement of topology and 
attribute characteristics between subjects in the population network. 
Different thresholds determine their corresponding different levels of 
topological structure in the population network. In other words, the 
thresholded connectivity networks with larger threshold often preserve 
fewer connections and thus are sparser in connections. Therefore, it is 
important to identify the optimal trade-off between the information gain 
by the removal of the noisy correlations and the loss due to removal of 
potentially useful weak correlations. Both the population networks of 
AD and ASD with the optimal T value are shown in Fig. 8. 

We can see from Fig. 9 that when the T value increases, the perfor
mance of hi-GCN first goes up, and when T goes beyond 0.6 for ABIDE 
and 0.7 or 0.8 for ADNI, the performance (ACC and AUC scores) starts to 
decline. It demonstrates that more neighborhood information help learn 
better node embedding. Nevertheless, too much neighborhood inevi
tably leads to over-smoothing. If T is too large, nodes (subjects) of the 
population network cannot get sufficient information from correlated 
nodes (subjects). When T = 1, it is equivalent to the case without 
considering the correlation among the subjects.  

2) Exchanging the strategies of subjects’ initial feature and similarity 
estimation 

To better evaluate and understand the effectiveness of the learned 
embedding by f-GCN and the similarity of the network structure of hi- 
GCN, we conduct the comparison by exchanging the strategies of sub
jects’ initial embedding and the similarity estimation in this group of 
experiments, including (1) embedding (subjects’ initial feature)+graph 
kernel (similarity), which is the chosen strategy in our hi-GCN; (2) 
embedding + learned embedding by f-GCN (similarity); (3) graph kernel 
(subjects’ initial feature)+embedding(similarity), in which each 
network is represented by a feature vector corresponding to the simi
larity between this network with the other ones with the WL Graph 
Kernel (WLGK) [44]. The experimental results are reported in Table 10. 

Fig. 8. The illustration of population network for two datasets.  
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As anticipated, our strategy adopted in hi-GCN provides the best results.  

3) Fusing the embedding with the graph properties as node features 

In order to test whether the performance can be improved by 
combining with the graph properties as node features or not, the features 
describing the graph properties are extracted and incorporated into the 
node features in the population network. Besides the embedding ob
tained by f-GCN, we try to incorporate the topology-based representa
tion or subgraph-based representation into the learned embedding. 
From Table 11, we can see that the proposed ‘embedding + Ordinal 
Pattern’ and ‘embedding + t-BNE’ generally improve the performance 

compared with the only embedding, which demonstrates that external 
information except CC is complementary to the learned embedding and 
can help improve the representation of the brain network. Integrating 
knowledge regarding the graph property could facilitate the learning of 
the network embedding.  

4) Evaluating the embedding with the various traditional classifiers 

In order to investigate the effectiveness of the learned feature rep
resentations, we compare the embedding obtained by our hi-GCN and f- 
GCN using various traditional classification models. For the regulari
zation and the kernel parameters of SVM, the regularization parameter 
of logistic regression, and the number of trees of Random forest are 
tuned by a 10-fold nested cross validation. The result is shown in 
Table 12. Overall, the results suggest that embeddings obtained by our 
hi-GCN can enable more accurate capacity as compared to the ones by f- 
GCN for different classification models. It confirms our initial hypothesis 
that the joint learning from two levels enables us to learn a latent 
embedding such that both the structural and relational properties of the 
network can be encoded and preserved. 

Fig. 9. Performance of different thresholds (T) for the population network.  

Table 10 
Performance comparison of various strategies of subjects’ initial feature and 
similarity estimation. The best results are bold.  

ABIDE ADNI 

Methods ACC AUC Methods ACC AUC 

embedding + graph 
kernel 

0.731 0.823 embedding + graph 
kernel 

0.785 0.865 

graph kernel +
embedding 

0.719 0.817 graph kernel +
embedding 

0.746 0.844 

embedding +
embedding 

0.710 0.809 embedding +
embedding 

0.738 0.829  

Table 11 
Performance comparison of fusing the embedding with the various graph 
properties as node features. The best results are bold.  

ABIDE ADNI 

Methods ACC AUC Methods ACC AUC 

Only embedding 0.731 0.823 Only embedding 0.785 0.865 
embedding + CC 0.728 0.823 embedding + CC 0.776 0.861 
embedding + t-BNE 0.740 0.832 embedding + t-BNE 0.789 0.872 
embedding +

Ordinal Pattern 
0.756 0.857 embedding +

Ordinal Pattern 
0.784 0.871  

Table 12 
Performance comparison of embedding obtained by our hi-GCN and f-GCN for 
various classifiers. The best results are bold.  

ABIDE Methods SVM Random 
forest 

Logistic 
regression  

embedding obtained by f- 
GCN 

0.772 0.796 0.757  

embedding obtained by hi- 
GCN 

0.808 0.814 0.789 

ADNI Methods SVM Random 
forest 

Logistic 
regression  

embedding obtained by f- 
GCN 

0.818 0.811 0.805  

embedding obtained by hi- 
GCN 

0.845 0.846 0.828  
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5) Evaluating the hierarchical embedding learning with various GCN 
models 

The GCN model is employed in the population network, and it is a 
first-order model and no attention mechanism. Recently, attention 
mechanisms have been widely used in various tasks. The goal of the 
attention mechanism is to select information that is relatively critical to 
the current task from all input. We employ GAT (Graph Attention Net
works) [45] with leveraging masked self-attentional layers to assign 
different weights to different nodes in a neighborhood. On the other 
hand, we perform higher-order convolutions by incorporating 
higher-order proximity via random walks in GCN. Integrating more 
inherent information into the proposed hierarchical embedding learning 
framework, which is expected to gain better results. Specifically, we 
employ a random walk sampling process on graphs to obtain the 
higher-order proximity representations. In our framework, the random 
walk strategy helps incorporate the higher-order structural information 
into the graph representations, which further allows for the higher-order 
graph convolutions to capture community and organizational structure 
of the population network. In Table 13, we report the comparison results 
of the different versions of GCN models. We can observe that both 
higher-order GCN and GAT perform better than the GCN model, indi
cating that more correlation or attention mechanisms applied in popu
lation network are more effective in capturing more information and 
learning more accurate brain network representations. The results 
further demonstrate the advantage of a hierarchical embedding learning 
model with two level GCN models. Furthermore, the results suggest that 
devising effective strategies to learn the network embedding in the 
population graph is essential to facilitate the learning of the brain 
network embedding and the diagnosis performance. 

5. Conclusion 

Recently, functional connectivity networks constructed from the 
functional magnetic resonance image (f-MRI) hold great promise for 
distinguishing the patients with neurological disorders from Normal 
controls. Network embedding is aimed at learning compact node rep
resentations based on network topology to facilitate the task of graph 
classification. In order to achieve a better graph embedding from brain 
networks, we develop a novel and principled framework for network 
embedding learning by efficiently integrating correlations among the 
subjects in a population with GCN. We conduct extensive experiments 
on real-world information networks to verify the effectiveness of our 
model, which demonstrates its superior performance compared with 
state-of-the-art baselines. It also achieves faster training and easier 
convergences. 
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